Краткая характеристика газообразных выбросов АЭС

В АЭС с реакторами типа ВВЭР и РБМК за счет тройного деления в твэлах образуется около 0,37-0,74 ТБк/МВт(эл).год трития. Для реакторов типа ВВЭР переход 3Н в жидкие и газообразные отходы принимают равным 74 и 7,4; для реакторов с кипящей водой - 2,6 и 0,18 ГБк/МВт(эл).год. Через оболочку из циркониевого сплава в теплоноситель вследствие диффузии поступает примерно 0,1 трития, находящегося под оболочкой. Если оболочка твэла сделана из нержавеющей стали, то скорость поступления трития в теплоноситель приблизительно в 10 раз больше.

Тритий может замещать водород во всех соединениях с кислородом, серой, азотом. А эти соединения составляют значительную часть массы животных организмов. Доказано, что он легко связывается протоплазмой живых клеток и накапливается в пищевых цепях. Когда тритий распадается, он превращается в гелий и испускает бета-излучение. Эта трансмутация должна быть очень опасной для живых организмов, т.к. при этом поражается генетический аппарат клеток.

Радионуклиды иода. При реакции деления, а также при распаде продуктов деления образуется несколько радионуклидов иода. Наибольший вклад в дозу облучения дают нуклиды с массовыми числами 129, 131, 132, 133, 134 и 135. Для всех из них за исключением 129I, в активной зоне реактора достаточно быстро устанавливается равновесное состояние. Попасть в окружающую среду радионуклиды иода могут только при разгерметизации оболочки твэла и первого контура.

Как источник облучения наиболее важным нуклидом иода является 131I. В равновесных условиях его активность колеблется от 0,92 до 1,1 пБк/МВт (теп). Долгоживущий 129I не обнаруживают в окружающей среде вокруг АЭС, и его выбросы значительно меньше выбросов других радионуклидов иода. 131I может существовать либо в аэрозольной, либо в газовой форме. Соотношение этих форм зависит от многих факторов и различно для разных АЭС, более того, оно может меняться по пути доставки отходов к сбросным устройствам. В отходах 131I представлен молекулярным иодом и иодом в органических соединениях, главным образом в виде иодистого метила СН3I.

На реакторах с обычной водой 73% радионуклидов иода присутствуют в виде органических соединений, 22% иодноватистой кислоты, 5% элементарного иода. Средние выбросы 131I из реакторов с кипящей водой и водой под давлением равны 74-185 и 1,85-22,2 МБк/МВт(эл).год.

Выбросы 131I из реактора РБМК существенно ниже, чем из ВВЭР. Это объясняется тем, что у данного реактора отмечается пониженный выход иода из негерметичных твэлов в теплоноситель.

Выброс иода из реакторов РБМК и ВВЭР определяется расходом неограниченных протечек теплоносителя в технологические помещения и выходом иода в воздух помещений. Обычно протечки теплоносителя на РБМК больше, чем на реакторах ВВЭР. Однако на АЭС с реакторами РБМК допустима перегрузка дефектных твэлов на ходу, что позволяет своевременно их заменять.

Это, а также меньший выход иода из-под оболочки дефектного твэла приводит к уравниванию выброса иода из-за протечки теплоносителя.

Радиоактивный иод вызывает нарушение гормонального уровня у человека, летаргию и ожирение.

Аэрозоли.

Часть продуктов деления, продукты распада РБГ и нуклиды с наведенной активностью образуют аэрозоли, которые с воздушными потоками могут поступать во внешнюю среду. Количество таких аэрозолей зависит от типа реактора, его мощности, эффективности систем газоочистки, водоочистки и ограничивающих барьеров, продолжительности эксплуатации и т.п.

Перейти на страницу: 1 2 3 4

Еще статьи

Проектирование услуги утилизации люминесцентных ламп на ООО Эколамп
На сегодняшний день одним из самых распространенных источников ртутного загрязнения являются вышедшие из эксплуатации люминесцентные лампы. Каждая такая лампа, кроме стекла и алюминия, содержит около 60 мг ртути. Поэтому отслужившие свой срок люминесцентные лампы, а та ...